Med1 plays a critical role in the development of tamoxifen resistance.

نویسندگان

  • Arumugam Nagalingam
  • Mourad Tighiouart
  • Lisa Ryden
  • Leena Joseph
  • Goran Landberg
  • Neeraj K Saxena
  • Dipali Sharma
چکیده

Understanding the molecular pathways that contribute to the development of tamoxifen resistance is a critical research priority as acquired tamoxifen resistance is the principal cause of poor prognosis and death of patients with originally good prognosis hormone-responsive breast tumors. In this report, we provide evidence that Med1, an important subunit of mediator coactivator complex, is spontaneously upregulated during acquired tamoxifen-resistance development potentiating agonist activities of tamoxifen. Phosphorylated Med1 and estrogen receptor (ER) are abundant in tamoxifen-resistant breast cancer cells due to persistent activation of extracellular signal-regulated kinases. Mechanistically, phosphorylated Med1 exhibits nuclear accumulation, increased interaction with ER and higher tamoxifen-induced recruitment to ER-responsive promoters, which is abrogated by inhibition of Med1 phosphorylation. Stable knockdown of Med1 in tamoxifen-resistant cells not only reverses tamoxifen resistance in vitro but also in vivo. Finally, higher expression levels of Med1 in the tumor significantly correlated with tamoxifen resistance in ER-positive breast cancer patients on adjuvant tamoxifen monotherapy. In silico analysis of breast cancer, utilizing published profiling studies showed that Med1 is overexpressed in aggressive subsets. These findings provide what we believe is the first evidence for a critical role for Med1 in tamoxifen resistance and identify this coactivator protein as an essential effector of the tamoxifen-induced breast cancer growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells.

Despite the fact that most breast cancer patients have estrogen receptor (ER) α-positive tumors, up to 50% of the patients are or soon develop resistance to endocrine therapy. It is recognized that HER2 activation is one of the major mechanisms contributing to endocrine resistance. In this study, we report that the ER coactivator MED1 is a novel cross-talk point for the HER2 and ERα pathways. T...

متن کامل

Tumor and Stem Cell Biology Cross-talk between HER2 and MED1 Regulates Tamoxifen Resistance of Human Breast Cancer Cells

Despite the fact that most breast cancer patients have estrogen receptor (ER) a-positive tumors, up to 50% of the patients are or soon develop resistance to endocrine therapy. It is recognized that HER2 activation is one of themajormechanisms contributing to endocrine resistance. In this study,we report that theER coactivatorMED1 is a novel cross-talk point for the HER2 and ERa pathways. Tissue...

متن کامل

Generation of Cisplatin-Resistant Ovarian Cancer Cell Lines

Ovarian cancer is the most lethal gynecological cancer in which cisplatin-based treatment plays fundamental role as the first line chemotherapy option. However, development of platinum-resistance is a critical and poorly understood problem in ovarian cancer treatment. Although in vitro generation of platinum-resistant ovarian cancer cell lines is a long established approach to uncover the molec...

متن کامل

بررسی بیوانفورماتیکی میانکنش بین میکرو RNAها با ژن‌های دخیل در عود مجدد سرطان پستان درمان شده با تاموکسیفن

Background and Objective: Tamoxifen is the most commonly used treatment for the patients with breast cancer called ER +, which prevents the expression of genes that are effective in the growth and proliferation of cancer cells by estrogen. Resistant to Tamoxifen is a major clinical problem in breast cancer treatment. In recent studies, the role of microRNAs in tamoxifen resistance has been rais...

متن کامل

The Mediator subunit MED1/TRAP220 is required for optimal glucocorticoid receptor-mediated transcription activation

The MED1/TRAP220 subunit of the Mediator plays a key role in facilitating ligand-dependent interactions of this multisubunit coactivator complex with nuclear receptors through their ligand binding domains. The isolated MED1/TRAP220 protein previously was shown to interact with glucocorticoid receptor (GR) in a ligand-dependent manner. However, the functional role of MED1/TRAP220, within the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 2012